See veebileht kasutab küpsiseid kasutaja sessiooni andmete hoidmiseks. Veebilehe kasutamisega nõustute ETISe kasutustingimustega. Loe rohkem
Olen nõus
"Eesti Teadusfondi uurimistoetus (ETF)" projekt ETF9350
ETF9350 "Elektersõidukite kiirlaadimiseks kasutatavate uudsete kahesuunaliste muunduritopoloogiate ja juhtimisalgoritmide uurimine ja väljatöötamine (1.01.2012−31.12.2015)", Tanel Jalakas, Tallinna Tehnikaülikool, Energeetikateaduskond.
ETF9350
Elektersõidukite kiirlaadimiseks kasutatavate uudsete kahesuunaliste muunduritopoloogiate ja juhtimisalgoritmide uurimine ja väljatöötamine
Research and development of new converter topologies and control methods for fast charging of electric vehicles
1.01.2012
31.12.2015
Teadus- ja arendusprojekt
Eesti Teadusfondi uurimistoetus (ETF)
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
4. Loodusteadused ja tehnika4.17. Energeetikaalased uuringudT140 Energeetika 2.2. Elektroenergeetika, elektroonika (elektroenergeetika, elektroonika, sidetehnika, arvutitehnika ja teised seotud teadused)100,0
AsutusRollPeriood
Tallinna Tehnikaülikool, Energeetikateaduskondkoordinaator01.01.2012−31.12.2015
PerioodSumma
01.01.2012−31.12.201211 610,00 EUR
01.01.2013−31.12.201311 610,00 EUR
01.01.2014−31.12.201411 610,00 EUR
01.01.2015−31.12.201511 610,00 EUR
46 440,00 EUR

During the project "Research and development of new converter topologies and control methods for fast charging of electric vehicles" is planned to study state of the art of electric vehicle fast charger technology, design a new electric vehicle fast charger prototype, develop new control algorithms, develop mathematical models and computer simulation models, analyze simulation results, analyze of the energy storage control, energy flow control and energy storage optimization methods, develop and test new power circuit topologies for fast charging stations. It is also planned to construct and test a scaled down prototype of electric vehicle fast charging station and integrate it with TUT microgrid. The project team consists of three researchers and master and doctoral students. The current project provides research topics for both doctoral students and research staff of power electronics group. The number of doctoral and master students may change during the project. Possible cooperation partners are Estonian company Harju Elekter, The Swiss Federal Technical University in Lausanne (EPFL), University of Zielona Gora and Gdynia Maritime University in Poland, Riga Technical University in Latvia and Lund University Department of Industrial Electrical Engineering and Automation in Sweden. Faculty of Power and Electrical Engineering in RTU is actively involved in applied research and development of power electronic converters for smart grids and distributed generation systems. The industrial electronic laboratory of the EPFL is engaged in the design of ultrafast charging stations, a project financed by the Swiss Energy and private enterprises. The results of the project are planned to be published in International Scientific Journals and conferences. 3-4 papers (ETIS classification 1.1, 1.2 or 3.1) per year are planned. A patent or utility model certificate is expected at the end of the project. This project has not only scientific value but also economic one. Energy efficient fast charging stations save our primary energy source – oil shale. For Estonian companies could the fast charging stations be one of the needed export articles. The Estonian lack of natural and human resources can be overcome by the export of high-technological equipment and know-how. As a result of this project the qualification and experience of TTU researchers in this field will be enhanced and the needed know-how base built.
Growing prizes of fossil fuels, environmental issues and bigger capacity accumulators transform the way of transportation. International Electrotechnical Commission (IEC) has developed a standard IEC61851, which classifies charging stations into 3 categories. Level three charging stations are publicly used fast charging stations with maximum charging power 50 to 240 kW, witch can charge the electric vehicle batteries to 80 % level within 15 minutes and to a 100 % level within 30 minutes. Due to high energy demand and needed high input currents a fast charging station is placed near to the substation that contains low frequency transformer. Inside the fast charging station intermediate DC-bus connects energy storages, supply grid rectifier and charging converters. Low voltage (570 V) causes high currents and results in high losses at busbars, magnetic components and semiconductor devices. Due to electric safety regulations galvanic isolation transformers are used in charging converters thus the component count is increased along with equipment cost and power losses in additional transformers and energy conversion stages. The problems in state of-the art electric vehicle fast charging stations are: 1. low frequency sub-station transformer; 2. additional energy losses due to many energy conversion states; 3. separate isolation transformers in each charging converter; 4. low intermediate DC-bus voltage (high conduction losses). To overcome those problems, found in state of the art electric vehicle fast charging stations a novel integrated multiport converter technology is be proposed. In proposed fast charging station instead of separate converters, that are connected by DC-link a integrated converter topology with common high frequency transformer is used. 6 kV substation with low frequency transformer is replaced with the high voltage AC/AC front end converter and intermediate DC-bus is replaced by the common high frequency transformer that lowers voltage and also ensures the needed galvanic isolation. Charging converters can be built without DC/AC stage and additional isolation transformers. Benefits of the proposed multiport converter topology are: 1. smaller weight and volume (due to less energy conversion stages); 2. smaller cost; 3. lower losses ( higher voltage, less transformers, instead of low frequency sub station transformer by AC/AC converter and high frequency transformer, less energy conversion stages); 4. simpler construction and power circuit topology.
Antud projekti peaeesmärk oli luua ning teaduslikult uurida mitmikviik (multiport) tüüpi skeemilahendusega kiirlaadimismuundureid elektersõidukitele. Enamik selliseid seadmeid kasutavad ühist alalispingesiini koos erinevate ühe- või mitmesuunaliste muunduritega sõidukite laadimiseks, energia salvestamiseks, laadimisjaama ühendamiseks alternatiivsete energiaallikatega. Mitmikviik topoloogia puhul ühendab kirjeldatud muundusseadmeid kõrgsagedustransformaator. Projekti käigus pakuti välja kiirlaadimisjaama ehitamine mitmikviikmuunduri topoloogia põhjal. Samas uuriti antud seadmete toimimist nii analüütiliste kui ka eksperimentaalsete meetoditega, milleks loodi mitmeid eri võimsusklassiga katseseadmeid. Lisaks uuriti antud topoloogia kasutamise võimalusi ka taastuvenergeetikas ning "jõuelektroonilistes trafodes" (power electronic transformer). Projekti käigus töötati välja ka uudne akude balansseerimissüsteemi juhtmeetod. Eksperimentides pöörati eriti suurt tähelepanu seadme tööle äärmuslikel-reziimidel ning antud skeemilahenduse piirangutele ja üleüldisele kasutegurile. töö tulemusi esitleti rohkem kui neljateistkümnes teaduspublikatsioonis. Välja töötati uudne 1kW laadimisjaam kergetele elektersõidukitele (koostamisel on dokumendid kasuliku mudeli saamiseks kirjeldatavale lahendusele). Eesti firma Ubik Solutions on näidanud üles huvi käesoleva projekti käigus loodud skeemilahenduse ning akude balansseerimismeetodi vastu, soovides neid kasutada oma loodavates energiasalvestites.